
1

Last Update: 01.16.2024

POTION SHOP: GONE ASTRAY

UNITY PROJECT DOCUMENTATION

2

Introduction……………………………………………………………………………………………………….

Customer………

First Person Controller………………………………………………………………………………………..

Game Manager……………………………………………………………………………………………………

Importing Images into the Project………………………………………………………………………..

Inventory Controller……………………………………………………………………………………………

Item Data………

Item Object………………………………………………………………………………………………………...

Item Plane…….

Load Potion Shop On Collision……………………………………………………………………………..

Materials Use……………………………………………………………………………………………………..

Maze AI Controller (and Wander Enemy)……………………………………………………………..

Maze Spawn Manager………………………………………………………………………………………….

Music Box (and Music Enemy)……………………………………………………………………………..

Order System……………………………………………………………………………………………………...

Potion Crafting System………………………………………………………………………………………..

Potion Data……………………………………………………………………………………………………….

Recipe…….

Recipe Book……………………………………………………………………………………………………….

Recipe Book Manager………………………………………………………………………………………….

Stamina System…………………………………………………………………………………………………..

Teleportation………………………………………………………………………………………………………

3

4

5

6

7

8

9

10

11

12

13

14 - 15

16 - 17

18

19

20

21 - 22

23

24

25

26

27

3

Hello Reader!

 I’m excited that you’ve decided to learn more about this Unity project! I’ve created this docu-

ment for the 2023-2024 UNM Gaming Capstone project titled “Potion Shop: Gone Astray”, specifi-

cally as a guide to the Unity project itself. The game was designed with many placeholders to imple-

ment our finalized media elements later on, including our theme, images, sounds, and animations, to

name a few. The purpose of this document is to help provide insight into how the game runs, as well

as to highlight the major areas where we will be integrating-in our finalized media elements. Please

let me know if you have any feedback, questions, or comments, and I hope this document will be use-

ful to you!

 Cheers,

 Christopher DeBonis
 Lead Game Developer

4

Set customer name

Set customer portrait

Directory where customer data is found

The customer game object holds the name of the customer and their portrait. The customer is used

in creating randomly-generated orders, whereby the customer name and portrait is displayed on the

order board in the potion shop.

5

Set walk speed

Set sprint speed

Set rotation speed

Set speed change rate

Detection radius

Detection angle

Set jump height

Set gravity effect

Set jump timeout time

Set fall timeout time

The first person controller is responsible for translating user input into interaction with the game

world. The settings here include the player’s movement speed, detection, jump height, effect of gravi-

ty, rotational speed (how fast they turn), and speed change rate (inertia).

6

Set Alpha maze spawn point

Set Bravo maze spawn point

Set Charlie maze spawn point

Set Delta maze spawn point

Set landlord payment amount

Set total time length of day

The game manager handles keeping track of global game settings, such as the amount of time in the

day, spawn points, player currency, landlord payment amount, and UI areas that get passed data

during runtime. The game manager persists throughout the game and is never destroyed.

7

Images should be imported into the images folder, and labeled as <name>_Image. The images

should also be converted to 2D/UI sprite objects upon import if they are to be used with the Unity UI

system.

8

Set trash button icon

The inventory controller is where the logic for the inventory system is located. Most settings in here

will not need setting or changing. The exception is that the trash button icon can be reset to a differ-

ent image, when it comes time to remove the placeholder image that’s there now.

9

Set whether item is an ingredient for a potion recipe

Set whether item is sellable

Set inventory width of the item

Set inventory height of the item

Set sprite icon for item

Set corresponding 3D item object for item

Directory where ingredients are found

Ingredients that can be configured

The item data object represents the data for an individual item in the potion shop game. For ingredi-

ents, the checkbox for ingredient should be marked true and the sellable checkbox should be false.

The width and height of the item in the inventory can also be set and modified here. The item data

game object also contains the image for the 2D icon as well as the 3D model for it.

10

Set rigid body for item object

Set corresponding item data

Directory where item objects are found

Item objects which are the 3D models

associated with each item (item data)

The item object represents the 3D instance of the item in the game world. The item object is used to

indicate an ingredient item in the 3D maze levels. It’s also meant to be collided with, as to be picked

up by the player.

11

The item planes are the three-dimensional 2D planes with the images of the ingredients on them.

The planes are scripted to always face the player, like it is in some retro, 3D video games.

12

Set amount of time

removed from day if

collides with player

The function of this class is simply to return the player to the potion shop upon collision with it. This

class is used both for the maze entrances and exits, as well as the wander AI that catches the player

upon collision with them. If desired, time can also be removed from the day when this happens, such

as if the player suffered a penalty from getting caught in the maze.

13

The directory where the materials used in the game can be found. These materials include prototype

material and the images for displaying the item objects, made so that they can be wrapped onto a

plane.

14

The maze AI controller is the logic for the enemy found there. The AI wanders around on a nav

mesh, patrolling a set number of points in random order. If a patrol point can’t be reached within a

certain amount of time, then it will timeout and attempt to move to a new patrol point. This is done

so that the enemy doesn’t get stuck due to an instance of bad pathfinding. The maze AI controller is

where the settings for the maze enemy can be altered, including patrol speed, chase speed, detection

radius and distance, and wait times. (***view inspector window on next page***)

The wandering AI is merely this AI controller with a load potion shop on collision component at-

tached to it. The player will be transported back to the potion shop with a time penalty if this colli-

sion occurs.

15

Set time before ESP detect

Set detection distance

Set detection cone of view

Set AI walk speed

Set AI sprint speed

Set wait time between actions

Set time until find new point

Set number of patrol points

Set individual patrol points

16

Set number of in-

gredients to spawn

Set spawn points

The maze spawn manager is used to set how many ingredients spawn into the maze without the mo-

rality modifier (base spawn amount). The ingredients to spawn variable is merely the amount of

items that will end up spawning during runtime when the morality modifier is applied. The maze

spawn manager is also used to assign possible ingredient spawn points in each maze. The way maze

ingredient spawning probability works at this time is that higher amounts/concentrations of ingredi-

ent spawn locations are placed in areas that are higher risk/danger.

The maze spawn manager is used to set how many ingredients spawn into the maze without the mo-

rality modifier (base spawn amount). The ingredients to spawn variable is merely the amount of

items that will end up spawning during runtime when the morality modifier is applied. The maze

spawn manager is also used to assign possible ingredient spawn points in each maze. The way maze

ingredient spawning probability works at this time is that higher amounts/concentrations of ingredi-

ent spawn locations are placed in areas that are higher risk/danger. The ingredients that will spawn

randomly in the maze at runtime must also be added to a list on the maze spawn manager. (***see

next page***)

17

Set items to choose from to spawn

Set enemy spawn points (not yet

implemented)

18

Music play length

Radius for catch distance

Amount of time removed if

player is caught

Audio source attached to AI

Music to play when alerted

by detecting player

Sound to play if player is

caught

The music box is a component that gets attached to

a basic, wander AI, which functionally turns it into

the music enemy. The music enemy wanders

around the maze looking for the player, and when

they spot them, they begin chasing them. A song

also starts playing upon the player being detected,

and if the player is within a certain radius from the

music enemy when the song stops, the player is tel-

eported back to the potion shop with a time penalty.

The music box contains the settings for the music

enemy’s song length, catch distance, and more.

19

List of current orders which

are displayed in the potion

shop (randomized each day)

List of the available customers

that can be chosen at random

to order a potion

List of the available potion

icons/types that can be chosen

at random for an order

The order system is what randomly generates, keeps track of, and performs data operations for or-

ders in the game. The order list is the order board that is displayed in the potion shop, where the

player can view and fulfill customer’s orders. There is also an area to add new Customer game ob-

jects and Potion types/icons to the order system, which will then be used for random order genera-

tion in the game.

20

Set length of time that po-

tions will take to brew

Percentages needed to deter-

mine the quality of potion when

being brewed, based on lid

placement, stirring, and temp

Set the Button game objects for

the potion crafting system

Choose display colors for the

temperature setting back-

ground

Choose display colors for the

potion quality background

Set temperature display image

Set empty slot sprite/mask

Set the TMP Text game objects

for the potion crafting system

The potion crafting system contains the logic for making ingredients into potions. The way that it

functions is that the player adds between 1-4 ingredients to the cauldron, and then if they have a val-

id recipe that contains exactly those ingredients, they can then press brew to begin crafting a potion.

The settings for the potion crafting system can be greatly customized, including display color, potion

quality ranges, and brew time (how long a potion needs to be brewed in seconds before it is com-

plete).

21

The potion data game object is a child of the item data class, which gives it the same attributes as the

item data class, including inventory size, 2D and 3D representations of the item, and whether it’s an

ingredient or sellable. Make sure not to set the potion as an ingredient and instead mark that it is

sellable as true, because these will be used to complete orders. In addition to the attributes that came

with the item data class, the potion data also requires one potion type to be chosen for it. (***see in-

spector window view on next page***)

22

Do not set as ingredient for a potion

Set as sellable for a potion

Set width of potion in inventory

Set height of potion in inventory

Set the 2D icon for this potion

Set the planar 3D representation of

the potion

Select the type of potion (only one)

Directory where the potions (potion

data game objects) are located

The list of potions in the Unity pro-

ject as found in the directory

23

Set the potion (potion data game object) that

is created with this recipe

Set the ingredients (at least one and up to

four)

Set the desired temperature for this recipe

1=freezing, 2=low, 3=medium, 4=hot, 5=boiling

Set whether the recipe requires stirring halfway

through brewing

Set whether the recipe desires the lid to be on

the cauldron

Directory where the recipes (recipe game

objects) are located

The list of recipes in the Unity project as

found in the directory

The recipe game object is where data for each individual recipe in the Unity project is stored. This

data includes the potion that is made from this recipe (potion data), the ingredients with which it

needs to be made (min = 1, max = 4), and the specific brew settings for that recipe (temp, stirring,

and lid settings).

24

Set the list of recipes that can be

made in the game

The recipe book is the game object that holds all of the different recipes (combinations of ingredi-

ents) that can be made in the game. New recipes are easily made by creating new Recipe scriptable

objects, which also requires creation of a new Potion (potion data) scriptable object that the recipe is

used to produce.

25

Set the canvas for the recipe book

UI

Set the player’s inventory grid

Set the index of the current book

page (debugging in editor)

Assign the pages in the recipe book

in desired order

Set the go to next page Button

Set the go to previous page Button

Set the toggle recipe book Button

The recipe book manager contains the settings for holding and displaying the recipe book pages. The

recipe book/manual is displayed as an icon in the player’s inventory, and its settings can be config-

ured here as needed. The individual pages for the recipe book will be assigned to this game object, as

will the buttons that’ll be used for navigating the recipe book. This class is designed with customiza-

tion in mind, including the ability to include the hand-drawn recipes for the game, once they’re cre-

ated and available.

26

Set reference to the first person

controller

Set the player’s max stamina

Set the player’s stamina cost when

they jump

Set the rate at which stamina de-

creases when sprinting

Set the rate at which stamina re-

plenishes when not sprinting

Set the run speed of the player

when out of stamina

Set the player’s normal run speed

Assign the image for the UI slider

bar which displays stamina progress

Assign the canvas group that con-

tains the stamina bar

The stamina system is what keeps track of the player’s energy level (ability to run). There are many

variables that can be customized here, especially during our own playtesting, so that we can eventu-

ally figure out which settings provide the best player experience.

27

Set teleport time length

Set radius for catch distance

Set amount of time removed if

player is caught

Set the maze AI controller

Set audio source attached to AI

Assign music to play when alert-

ed by detecting player

Assign sound to play if player is

caught

The teleportation component is what will be used for the third and final maze enemy type: the tele-

porting enemy. The teleporting enemy, who is invisible, will wander and then phase in to the map

upon seeing the player (simulating teleportation). The player must then look at the enemy and see

them within a certain amount of time, or else the player gets teleported back to the potion shop with

a time penalty applied to the day if they don’t by the time the enemy phases out. If the player does

manage to look at the teleporting enemy before it phases out, then the player will remain in the maze

untouched and the teleportation enemy will return to wandering the maze invisibly, until once again

seeing the player (after a cooldown so it’s not immediately phasing back in).

